Breast Cancer and Chemicals Policy Project

A major challenge to understanding how chemicals in consumer products and the environment may contribute to breast cancer and other diseases is a lack of toxicity information for tens of thousands of commonly used chemicals. Through its Green Chemistry Initiative, California is leading the effort to address this data gap by improving access to information about chemicals used in products and manufacturing processes. The Breast cancer and Chemicals Policy Project (BCCP) aims to provide guidance for this initiative by developing an approach to chemical testing that accounts for the events in biological pathways that may be associated with increased risk of breast cancer.

A multidisciplinary expert panel assessed existing toxicological tests and identified gaps in the available test methods. The team will recommend 1) an approach to identifying chemicals that may raise the risk of breast cancer, and 2) identify high priority needs for new test methods. Results are intended to serve scientists, policy makers, and the breast cancer advocacy community,

Structure of the BCCP Project

Cancer Biology
Identify known and suspected events in biological pathways that may raise the risk of breast cancer.

Toxicity Testing
Identify currently available testing methods for detecting chemicals that may raise the risk of breast cancer; identify emerging test methods that could be adapted for rapid chemical screens.

Policy
Identify decision-making tools and data needs to inform implementation of new chemicals policy.

Breast Cancer & Chemicals Policy Project

Goals of the BCCP Project:

1. **Develop an approach to chemical hazard identification** based on currently available methods for detecting chemicals that may raise the risk of breast cancer; the approach should generate toxicity information relevant to a variety of users of chemical information.
2. **Identify data gaps and research needs** to improve chemical decision-making, including informing a shift toward rapid screening methods performed without laboratory animals.
3. **Pilot a project model** that could be applied to other disease endpoints, with the ultimate goal of producing a comprehensive approach to chemical hazard identification.